A Relation-Theoretic Matkowski-Type Theorem in Symmetric Spaces

نویسندگان

چکیده

In this paper, we present a fixed-point theorem in R-complete regular symmetric spaces endowed with locally T-transitive binary relation R using comparison functions that generalizes several relevant existing results. addition, adopt an example to substantiate the genuineness of our newly proved result. Finally, as application main result, establish existence and uniqueness solution periodic boundary value problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

Vanishing Theorem for Irreducible Symmetric Spaces of Noncompact Type

We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M 6= SO0(2, 2)/SO(2)×SO(2). Let π : E → M be any vector bundle, Then any E−valued L harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.

متن کامل

A Conjugacy Theorem for Symmetric Spaces

In this paper we prove that two Cartan subspaces of a semisimple symmetric pair (g, τ) are conjugate under G = Int(g) if and only if they are conjugate under (Gτ )0. Moreover we derive a double coset decomposition for G, which improves the results of Oshima and Matsuki.

متن کامل

FIXED POINT TYPE THEOREM IN S-METRIC SPACES

 A variant of fixed point theorem is proved in the setting of S-metric spaces

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2021

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms10020050